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A B S T R A C T   

Brain networks constructed with regions of interest (ROIs) from the structural magnetic resonance imaging 
(sMRI) image are widely investigated for detecting Alzheimer’s disease (AD). However, the ROI is generally 
represented by spatial domain-based features, so attentions are hardly paid to constructing a brain network with 
the frequency domain-based feature. In order to accurately characterize the ROI in the frequency domain and 
then construct an individual network, in this study, a novel method, which can describe the ROI properly by 
directional subbands and capture correlations between those ROIs, is proposed to construct a shearlet subband 
energy feature-based individual network (SSBIN) for AD detection. Specifically, the SSBIN is constructed with 90 
ROIs which are segmented from the pre-processed sMRI image based on the automated anatomical labeling atlas, 
the 90 ROIs are represented by directional subband-based energy feature vectors (SVs) formed by jointing energy 
features extracted from their directional subbands, and the weight values of the SSBIN are computed by Pear
son’s correlation coefficient (PCC). Subsequently, two network features are extracted from the SSBIN: the node 
feature vector (NV) is computed by averaging the 90 SVs; the low dimensional edge feature vector (LV) is ob
tained by kernel principal component analysis (KPCA). Following that the concatenation of NV and LV is used as 
a SSBIN-based feature for the sMRI image. Finally, we use support vector machine (SVM) with the radial basis 
function kernel as classifier to categorize 680 subjects selected from the AD Neuroimaging Initiative (ADNI) 
database. Experimental results validate that the ROI can be properly characterized by the NV, and correlations 
between ROIs captured by the LV play an important role in AD detection. Besides, a series of comparisons with 
four current state-of-the-art approaches demonstrate the higher AD detecting performance of the SSBIN method.   

1. Introduction 

As the most complicated network, a healthy human brain is consisted 
of about 100 billion of neurons, and these neurons also have complex 
connections between their long and branching extensions (Dai and Guo, 
2017; Liu et al., 2015). Studies have suggested that broken connections 
between those neurons are the main reasons causing most brain 

diseases, such as Alzheimer’s disease (AD) and its prodromal stage-mild 
cognitive impairment(MCI), which has been testified by many recently 
published works (Moetesum et al., 2019; Zhou et al., 2020; El-Yacoubi 
et al., 2019; Zhang et al., 2020, 2019). 

Nowadays, Alzheimer is still not a curable neuro-degenerative dis
ease, which is also gradually progressive with aging. Hence, it leads to 
be a main type for dementia with age more than 65 years. For example, 

* Corresponding authors at: Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical 
University, Xi’an 710072, China 

E-mail addresses: zhangsw@nwpu.edu.cn (S.-W. Zhang), lnchen@sibs.ac.cn (L. Chen).   
1 Data used in this article are obtained from the ADNI database. For more information, we refer readers to website of the ADNI: adni.loni.usc.edu. 

Contents lists available at ScienceDirect 

Computerized Medical Imaging and Graphics 

journal homepage: www.elsevier.com/locate/compmedimag 

https://doi.org/10.1016/j.compmedimag.2022.102057 
Received 14 April 2021; Received in revised form 18 February 2022; Accepted 17 March 2022   

mailto:zhangsw@nwpu.edu.cn
mailto:lnchen@sibs.ac.cn
http://adni.loni.usc.edu
www.sciencedirect.com/science/journal/08956111
https://www.elsevier.com/locate/compmedimag
https://doi.org/10.1016/j.compmedimag.2022.102057
https://doi.org/10.1016/j.compmedimag.2022.102057
https://doi.org/10.1016/j.compmedimag.2022.102057
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compmedimag.2022.102057&domain=pdf


Computerized Medical Imaging and Graphics 98 (2022) 102057

2

the year 2006 witnessed more than 26 million people with AD world
wide, and by 2050, one among 85 people will be affected by AD (Stefano 
et al., 2019); Total payments, in 2008, for all kinds of services to de
mentia people age > 65 years, are predicted to be $277 billion in USA 
(Alzheimer’s Association, 2018). Researches had revealed that with 
aging, the MCI patient’s and the healthy control (HC) individual’s rates 
converting to AD highly reach to 15% and 2% per year, respectively; 
Obviously, the conversion rate for the MCI is higher than that of the HC 
(Ardekani et al., 2017; Thung et al., 2018). Besides, early detection for 
people with AD, estimated by a mathematical model, can save the 
medical and care cost up to $7.9 trillion (Alzheimer’s Association, 
2018), which means that the early and accurate detection can make the 
AD patient benefit from his treatment and finance. 

In clinical, under the help of the brain imaging equipment and 
technology, brain diseases, such as gray matter atrophies of the AD and 
MCI patients, can be clearly reflected and observed by their brain im
aging (Coronado-Leija et al., 2017; Guo et al., 2017; Suk et al., 2015; 
Long et al., 2017; Wang et al., 2017). But it is impractical for clinicians 
to quickly detect MCI and AD patients from HC individuals when facing 
huge data produced by dementia patients. Therefore, researchers have 
made many efforts to characterize brain atrophy patterns related to AD, 
and then extract different kinds of features from the sMRI image to 
develop an accurate imaging marker for AD detection (Liu et al., 2018; 
Zhang et al., 2017; Cheng et al., 2019; Peng et al., 2019; Arbabshirani 
et al., 2017). Based on the techniques used to extract features from the 
sMRI image, we roughly divide the existing methods for AD detection 
into two categories: the spatial domain-based approach (Farrar et al., 
2018; Vogel et al., 2018; Saravanakumar and Thangaraj, 2019; Cao 
et al., 2017; Beheshti et al., 2016) and the frequency domain-based 
approach (Zhang et al., 2018; Jha et al., 2018). 

For the spatial domain-based method, features used for AD detection 
are directly extracted from the sMRI image by describing microstruc
tural patterns of the atrophies (Ou et al., 2015; Partovi et al., 2017; Cevik 
et al., 2017; Giulietti et al., 2018; Glozman et al., 2017; Feng et al., 
2016), or from a network constructed with different brain regions (Lu 
et al., 2018; Duraisamy et al., 2019; Wiepert et al., 2017; Swietlik and 
Bialowas, 2019). For example, Li et al. (2019) proposed to use a deep 
learning method together with the hippocampal MRI data for AD clas
sification; Ju et al. (2019) proposed to put brain network and clinical 
relevant text information into a deep learning model for making early 
AD diagnosis; Liu et al. (2018) extracted features from a developed hi
erarchical network of the brain for detecting AD, and they also proposed 
to use a brain network’s edge and node features for classifying AD pa
tient (Liu et al., 2017). It is well known that a sMRI image consists of 
millions of voxels, which makes the spatial domain-based method 
poorer in the issue of reducing dimensionality. The reason is that a high 
dimensional spatial feature is extracted to characterize the atrophy 
patterns related to AD precisely and describe the sMRI image well, but it 
will lead to a poor performance for the classifier when using this kind of 
feature to make a decision. 

For the frequency domain-based method, features for detecting AD 
are indirectly extracted from the sMRI image by capturing energy dis
tribution patterns of the brain atrophies reflected in the directional 
subbands at different scales. For example, Zhang et al. (2018) extracted 
features from an MRI based on stationary wavelet entropy for AD clas
sification; Jha et al. (2018) developed a novel computer-aided diagnosis 
cascade model using the dual-tree complex wavelet transform to cate
gorize AD patients; Feng et al. (2020) used wavelet transformation en
ergy feature of the sMRI image for AD identification; In their another 
work (Feng et al., 2021), a subband network constructed with the non 
subband contourlet transform was used for AD classification. However, 
the frequency domain-based feature is an overall representation for the 
sMRI image, which makes its interpretability poor; Furthermore, cor
relations between different brain ROIs are also neglected in this kind of 
feature. The reason is that before feature extraction, transformation, 
such as wavelet (Dong et al., 2017) or contourlet (Do and Vetterli, 2005; 

Cunha et al., 2006), firstly perform on the sMRI image. 
In order to construct a brain ROI-based individual network in the 

frequency domain with the ROI’s energy features and then extract low- 
dimensional features from the sMRI image, in this study, a novel method 
is proposed to construct a shearlet subband energy feature-based indi
vidual network (SSBIN) for AD detection. Particularly, we firstly 
segment the pre-processed sMRI image into 90 ROIs based on the 
automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 
2002). And then we do the shearlet transform separately on each of the 
90 ROIs to get their directional subbands at different scales, following 
that three energy features are computed based on each directional 
subband and a ROI is represented by a SV which is formed by jointing 
energy features of the ROI’s directional subbands. Subsequently, the 
SSBIN is constructed with the 90 SVs, and is weighted by PCC. We then 
extract two features from the SSBIN, the NV is computed by averaging 
the 90 SVs, and the LV is obtained by KPCA. Finally, the concatenation 
of NV and LV is regarded as a SSBIN-based feature of the sMRI image. 
Meanwhile, we use SVM with the radial basis function (RBF) kernel as 
classifier for AD detection. Experimental results validate that the ROI 
can be properly depicted by the NV, and correlations between ROIs 
captured by the LV are of importance for detecting AD. Besides, 
comprehensive comparisons with four other state-of-the-art approaches 
demonstrate the higher AD detecting performance of the SSBIN method 
under four metrics, which indicate that the SSBIN-based feature can be 
an assistant imaging marker for the clinical AD diagnosis. 

In this study, our main contributions include three points. First, a 
novel method is proposed to construct a ROI-based individual brain 
network with the sMRI image in the frequency domain for AD detection. 
Second, instead of extracting spatial features directly from the brain 
ROI, the proposed SSBIN method uses shearlet to transform the ROI into 
directional subbands firstly, and then extract energy features from the 
subbands to represent the ROI. Third, the proposed SSBIN method 
describe the sMRI image in the frequency domain, while construct brain 
network in the spatial domain, which ensures that the SSBIN-based 
feature has a low dimensionality and contains the advantages of both 
the spatial domain and the frequency domain. 

The rest of this work is organized as follows. Materials and methods 
are given in Section 2. Experimental metrics and results are introduced 
in Section 3. Comparisons with four state-of-the-art approaches are 
shown in Section 4. Finally, a brief conclusion to this study is provided in 
Section 5. 

2. Materials and methods 

In this section, materials used in this study and their pre-processing 
are firstly introduced, and then we show the proposed method of how to 
construct the shearlet subband energy feature-based individual network 
(SSBIN) in detail. 

2.1. Materials 

The ADNI was launched in 2003, and its primary goal is to measure 
the progression of MCI and early AD using brain imaging, and other 
clinical information. For more information, we refer readers to website 
of the ADNI: adni.loni.usc.edu. We select 680 samples from the ADNI 
database, including 200 AD, 280 MCI and 200 HC. Among the 280 MCI 
subjects, 120 samples who will convert to AD in the follow-up are 
denoted as MCIc; the remaining is denoted as MCInc. We use the 680 
sMRI images to construct AD-vs-HC, ADvs-MCI, MCI-vs-HC, MCIc-vs- 
MCInc four data sets. Table 1 provides more detail demographic infor
mation about the 680 selected subjects. 

Before extracting feature from the 680 sMRI images, we perform 
motion correction, registration and skull strap, segmentation, and 
smoothing to them using statistic parametric mapping (SPM8) (Ash
burner and Group, 1994) and voxel-based mapping (VBM8) (Ashburner 
and Friston, 2000) to remove uninformative brain tissues and make sure 
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that different subjects’ certain brain region is at the same position. After 
four preprocessing steps, the original sMRI image generates gray matter 
(GM), cerebrospinal fluid (CSF), and white matter (WM) three brain 
tissue images. Fig. 1 shows a visual comparison of the preprocessed and 
the original sMRI images, which is an example of four scans of the 
preprocessed and the raw sMRI images. Considering the fact that the GM 
image is mostly related to AD, so we select the GM image to extract the 
SSBIN-based feature, and then we will conduct experiments on 
AD-vs-HC, AD-vs-MCI, MCI-vs-HC and MCIc-vs-MCInc four data sets to 
evaluate the AD detecting performance of the SSBIN method. 

2.2. Method of extracting the SSBIN-based feature 

Procedure of the automated anatomical labeling (AAL) atlas was 
provided by the Montreal Neurological Institute (Tzourio-Mazoyer et al., 
2002). In this study, we use the interface under the SPM8 package to 
segment the GM image into 90 ROIs (Zhu et al., 2019; Cuingnet et al., 
2011; Zhou et al., 2014). For convenience, those GM images are 
numbered and put into a set which is denoted as{GMi}

N
i=1, here N = 680. 

After segmentation, 90 ROIs of the i-th GM image GMican be 
obtainedROIi

j,j = 1,2,.,90. Obviously, the ROI segmented by AAL is a 3D 
image, but sizes of the 90 ROIs are different, and each ROI contains more 
redundancy than the useful information, such as the black background. 
Therefore, non-zero voxels contained in the 3D ROI are selected and 
then reshaped as a 2D image by column. In the following, the reshaped 

2D image is also called as ROI. For brevity, we use a set,{ROIi
j}, to 

represent ROIs of the N GM images, herej(j = 1,2, .,90)is the j-th ROI of 
the i-th GM image. 

It has been widely acknowledged that traditional wavelets are not 
very effective in dealing signals containing distributed discontinuities 
(Easley et al., 2008). To overcome this limitation, the shearlet transform 
was developed to capture the intrinsic geometrical features. The shearlet 
is by means of a simple but rigorous mathematical framework which 
provides a more flexible theoretical tool for the geometrical represen
tation of multidimensional data (Dong et al., 2015). Considering ad
vantages of the shearlet (Feng et al., 2016), we will decompose the ROI 
by shearlet. Given the j-th ROI of the i-th GM image,ROIi

j, it is decom
posed by the shearlet with S directional levels and L decomposition 
scales, and we can obtain(2S + 2)× Ldirectional subbands and a low 
frequency subband. Fig. 2 shows the decomposition of a ROI by the 
shearlet with one directional level and two decomposition scales, so 
there are(21 + 2)× 2 = 8high frequency subbands and a low frequency 
subband. It can be seen from Fig. 2 that the low frequency subband only 
contains macro-structural information which is not related to AD; hence 
the low frequency subband is abandoned in the SSBIN method. For 
brevity, a set is used to contain and number the directional subbands of 
the 90 ROIs, which is denoted as{SBi

(j,k)}, herei(i = 1,2,.,N)is the i-th GM 
image, j(j = 1,2,.,90)is the j-th ROI of the i-th GM image, andk(k = 1,2,.,
(2S + 2)× L)is the k-th directional subband of the j-th ROI of the i-th GM 
image. 

Coefficients with different modulus in a directional subband describe 
the energy distribution of the spatial structures in the frequency domain. 
To precisely represent the directional subband, three energy features are 
computed to capture different energy distribution patterns in the 
directional subband, which are separately represented by 

e1 =
1
M
∑M

x=1
|SB(x)| (1)  

Table 1 
Demographic information of the 680 subjects selected from the ADNI database.  

Type Gender (F/M) Number Age (Mean±D) MMSE (Mean±D) 

AD 78/122  200  76.85±7.01  22.15±3.17 
MCIc 67/53  120  78.65±9.73  26.38±3.76 
MCInc 71/89  160  73.59±7.68  26.21±2.67 
MCI 138/142  280  75.76±8.96  26.28±3.17 
HC 84/116  200  76.21±4.97  29.09±1.15  

Fig. 1. An example of four scans from the preprocessed (first column) and the raw (second column) sMRI images.  
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e2 =
1
M
∑M

x=1
(|SB(x)| − e1)2 (2)  

and 

e3 =

1
M

∑M

x=1
(|SB(x)| − e1)3

[
M

M− 1e2
]3

2
(3)  

where SB(x) is the x-th coefficient contained in the directional subband 
and M is the number of coefficients in the directional subband. Hence 
the directional subband can then be represented by 

FV = [e1, e2, e3] (4) 

Therefore, a ROI can be easily described by a directional subband- 
based feature vector 

SV =
[
FV1,FV2, .,FV(2S+2)×L

]
(5) 

In this study, the SV is regarded as a node of the SSBIN. In the 
following, we will construct a SSBIN based on these SVs. For conve
nience, a set used to contain and number the SVs of all GM images is 
denoted as{SVi

t}, heret(t = 1, 2, ., 90)is the t-th node of the i-th GM 
image. 

For any two nodesSV1andSV2, the weight value (W) of their edge is 
measured by Pearson’s correlation coefficient (PCC) 

W =

∑3×(2S+2)×L

y=1
(SV1(y) − SV1)(SV2(y) − SV2)

T1 × T2
(6)  

where 

T1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑3×(2S+2)×L

y=1
(SV1(y) − SV1)

2

√
√
√
√
√ (7)  

T2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑3×(2S+2)×L

y=1
(SV2(y) − SV2)

2

√
√
√
√
√ (8) 

SV1(y)andSV2(y)are the y-th feature of theSV2andSV2, 
andSV1andSV2are the mean value ofSV2andSV2. By means of nodesSVt ,t 
= 1,2, .,90and Eq. (6), we can construct an90× 90edge weight matrix 

(namely, a matrix representation of the SSBIN) and obtain90×89
2 =

4005edges. Fig. 3 shows a SSBIN constructed with 90 SVs and weighted 
by PCC. The node feature vector (NV) of the SSBIN is computed by 
averaging these SVs 

NV =
1
90
∑90

t=1
SVt (9)  

and the edge feature vector (EV) of the SSBIN can then be extracted by 
jointing these Ws 

EV = [W1,W2, .,W4005] (10) 

For a 1 × 4005 EV, the spatial structure is unstable because of its 
high dimensionality which will make a significant influence on the 
discriminative power. Hence, the dimensionality of the EV need be 
reduced. Generally speaking, a set of observations that vary linearly can 
only be effectively processed by principal component analysis (PCA) 
(Scholkopf et al., 1997). To conquer this limitation of PCA, Kernel PCA 
(KPCA) is proposed to find a computationally tractable solution through 
a simple kernel function that intrinsically constructs a nonlinear map
ping from the input space to the feature space, that is, KPCA is the 
implementation of performing a nonlinear PCA in the input space 
(Romdhani et al., 1999). As a result, the data can always be mapped into 
a higher-dimensional space in which they vary linearly when its varia
tions are nonlinear (Lee et al., 2004; Shachar et al., 2018). In this study, 
we use KPCA to reduce the dimensionality of an EV, and meanwhile the 
Gaussian kernel is employed. After performing KPCA on those EVs, we 
can get the low dimensional edge feature vector (LV) of the SSBIN. 

Subsequently, the SSBIN-based feature of a GM image is extracted by 
concatenating the NV and the LV, which is represented by 

SSBIN = [NV,LV] (11) 

For convenience, a set is used to contain and number SSBIN-based 
features of the GM images in{GMi}

N
i=1, which is denoted as{SSBINi}

N
i=1. 

In addition, Table 2 displays the pseudo-code of the proposed algorithm 
to extracting the SSBIN feature from the GM image. 

And finally the SSBIN-based feature is used as an input of the support 
vector machine (SVM) classifier for AD classification. The SVM classifier 
is provided by MATLAB software in this study, and we select the radial 

Fig. 2. Decomposition of a ROI by the shearlet with S =1 and L =2.  

Fig. 3. A SSBIN constructed with 90 SVs and weighted by PCC.  
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basis function (RBF) as the kernel of the SVM classifier, which is 
formulated as 

k

(

SSBIN1, SSBIN2

)

= exp

(

−

⃒
⃒
⃒
⃒SSBIN1 − SSBIN2

⃒
⃒|

2

2σ2

)

(12) 

Obviously, regarding to the SVM classifier with RBF kernel, two 
important parameters, the window width of the RBF kernelσand the 
penalty coefficient of the SVM classifier C, need be estimated based on 
experiments. Theσdetermines the number of support vectors, and the C 
can control the penalty degree for error. Therefore,σand C should be 
estimated based on experiments carefully. 

In short, in order to accurately characterize the ROI in the frequency 

domain and then construct an individual network, the pre-processed 
sMRI image is firstly divided into 90 ROIs using the AAL atlas. Then 
the shearlet transform is separately performed on each of these ROIs, 
following that a ROI is represented by the SV. Subsequently, a SSBIN is 
constructed with the 90 SVs and is weighted by PCC. Finally, NV of the 
SSBIN is computed by averaging these SVs, LV of the SSBIN is computed 
by KPCA, and concatenation of the NV and the LV is regarded as a SSBIN- 
based feature, which is used as input of the SVM classifier for AD 
detection. Fig. 4 shows the flowchart of the SSBIN method. 

3. Experimental metrics and results 

In this section, multiple experiments are conducted to evaluate the 
AD detecting performance of the SSBIN method on AD-vs-HC, AD-vs- 
MCI, MCI-vs-HC, MCIc-vs-MCInc data sets. We firstly introduce experi
mental metrics used in this study, and followed by experimental results 
of the SSBIN method. 

3.1. Metrics 

For each of the four data sets, samples are randomly divided into ten 
subsets, nine of them are used for training, and the rest is used for test. 
The above process is randomly done ten times to get an unbiased esti
mation for the SSBIN method. Finally, we use mean classification ac

Table 2 
The pseudo-code of extracting the SSBIN feature from the GM image.  

Input: the GM imageOutput: the SSBIN feature  
1. Segment the GM image into 90 ROIs based on AAL: ROIj , j = 1,2, .,90.  
2. While j ≤ 90  
3. Doing shearlet transform on ROIjto get its subbands  
4. Computing SVj of the ROIj based onEqs. (1), (2), (3), (4) and (5)  
5. j = j + 1  
6. End  
7. Constructing SSBIN of the GM image based on 90 SVs andEq. (6)  
8. Return the SSBIN feature extracted from the SSBIN  

Fig. 4. Flowchart of the proposed method for AD Detection using features of the shearlet subband energy feature-based individual network.  
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curacy (MC_ACC), mean classification sensitivity (MC_Se), mean classi
fication specificity (MC_Sp), and area under the receiver operating 
characteristic curve (AUC) of the ten experiments as the final results on a 
data set. The MC_ACC, MC_Se, and MC_Sp are separately formulated as 

MC ACC =
1
10
∑10

i=1

TPi + TNi

TPi + FPi + TNi + FNi
(13)  

MC Se =
TPi

TPi + FNi
(14)  

and 

MC Sp =
TNi

FPi + TNi
(15)  

whereTPiis the number of correctly classified positive subjects, FPiis the 
number of incorrectly classified positive subjects, TNiis the number of 
correctly classified negative subjects, FNiis the number of incorrectly 
classified negative subjects, and i(i = 1,2,.,10)is the i-th experiment on a 
data set. 

3.2. Results 

For the shearlet transform, the directional factor S and the decom
position scale L determine the number of subbands for each ROI, which 
indirectly affect the SV’s structural stability. Therefore, we do multiple 
experiments on AD-vs-HC, AD-vs-MCI, MCI-vs-HC, and MCIc-vs-MCInc 
data sets to obtain an optimal combination between S and L. Fig. 5 
shows MC_ACCs of experiments with different S and L values on the four 
data sets. It can be obviously seen from Fig. 5 that when S ≤3, MC_ACCs 
on the four data sets gradually increase, while after S >3, MC_ACCs 
drastically decrease, and meanwhile MC_ACCs of the experiments with L 
=1 on the four data sets are better than those of experiments with L >1. 
In terms of MC_ACCs shown in Fig. 5, we set S =3 and L =1 as the 

optimal parameters of the shearlet transform. As a result, a ROI is 
decomposed into (2S +2) × L = 10 directional subbands, and the 
dimensionality of the SV is3× (2S + 2)× L = 30, that is, nodes (NV) of 
the SSBIN are represented by a 1 × 30 vector. 

For the KPCA with a Gaussian kernel, the number of principal 
components P (namely, the dimensionality of LV) and the width of the 
Gaussian Kernel K_W are needed to be estimated by AD detecting ex
periments. MC ACCs of experiments with different P and K_W values on 
AD-vs-HC, AD-vs-MCI, MCI-vs-HC, and MCIc-vs-MCInc data sets are 
given in Fig. 6. According to Fig. 6(a), we can find that the best MC_ACC 
falls in the interval 15 < P < 25. In order to obtain the optimal esti
mation P value, we further perform experiments when 15 < P < 25, 
and MC_ACCs are shown in Fig. 6(b). We can see from Fig. 6(b) that with 
the increase of P, MC_ACCs of the SSBIN method also gradually increase; 
After P > 19, MC_ACCs begin to decrease gradually. Therefore, we set 
P = 19. Similarly, according to Fig. 6(c), we can find that when 
1.0 < K_W < 2.0, the best MC ACC of the SSBIN method can be ach
ieved. In order to obtain the optimal estimation K_W value, we also 
further conduct experiments when 1.0 < K_W < 2.0, and MC ACCs are 
shown in Fig. 6(d). Based on Fig. 6(d), we can see that with the increase 
of K_W, MC_ACCs of the SSBIN method gradually increase; After K_W 
> 1.3, MC_ACCs of the SSBIN method start to decrease gradually. Hence 
we set K_W = 1.3. In terms of MC ACCs shown in Fig. 6, we set P=19 and 
K_W =1.3 as the optimal estimation parameters of the KPCA in this 
study. It can be obviously found that the final dimensionality of the 
SSBIN-based feature is 3× (2S + 2)× L + P = 49. 

To explain why the KPCA with the Gaussian kernel is used in this 
method, experiments under the PCA and the KPCA with linear (KPCA-L), 
polynomial (KPCA-P), and Gaussian (KPCA-G) kernels are performed on 
AD-vs-HC, AD-vs-MCI, MCI-vs-HC, and MCIc-vs-MCInc data sets, and 
MC ACCs are shown in Fig. 7. It can be obviously seen from Fig. 7 that 
MC_ACCs, MC_Ses, and MC_Sps of the KPCA-G consistently outperform 
those of the other kernels, except for MC_Se of the KPCA-G on the MCI- 

Fig. 5. MC ACCs of parameter estimation experiments with different S and L values on AD-vs-HC, AD-vs-MCI, MCI-vs-HC, and MCIc-vs-MCInc data sets.  
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vs-HC data set which is inferior to that of the KPCA-P. The phenomenon 
shown in Fig. 7 indicates that correlations between different ROIs are 
not linear and the nonlinearity between these ROIs can be captured by 
KPCA with the Gaussian kernel in higher dimensional space. Hence, we 
select the KPCA with the Gaussian kernel to reduce the dimensionality of 
the SSBIN-based feature in this study. 

For the SVM classifier with a RBF kernel, the window width of the 
RBF kernel σ and the penalty coefficient of the SVM classifier C are 
needed to be estimated by experiments to obtain their optimal values. 
We perform parameter estimation experiments for the SVM classifier 
with a RBF kernel on AD-vs-HC, AD-vs-MCI, MCI-vs-HC, and MCIc-vs- 
MCInc data sets, and MC_ACCs of the parameter estimation experi
ments with different σ and C values are given in Fig. 8. According to 
Fig. 8(a), we can find that the best MC ACC of the SSBIN-based feature 
falls in the interval 1.4 < σ < 2.8. In order to get the optimal estimation 
σ value, we do experiments when 1.9<σ<2.5, and Fig. 8(b) shows 
experimental MC_ACCs. Based on Fig. 8(b), we can see that with the 
increase of σ, MC_ACCs of the SSBIN-based feature increase gradually, 
after σ>2.2, MC_ACCs of the SSBIN-based feature begin to stabilize 
gradually. Therefore, we set σ=2.2 as the optimal estimation value of the 
RBF kernel’s window width. Similarly, according to Fig. 8(c), we can 
find that the best MC_ACC of the SSBIN-based feature can be achieved 
when 1< C <7. In order to obtain the optimal estimation C value, 
another experiments are performed when 1<C ≤6, and MC_ACCs are 

shown in Fig. 8(d). Based on Fig. 8(d), we can see that with the increase 
of C, MC_ACCs of the SSBIN-based feature also gradually increase before 
C ≤2, however, after C >2, MC_ACCs of the SSBIN-based feature start to 
be stabile gradually. Hence, we set C =2 as the optimal estimation value 
of the SVM classifier’s penalty coefficient. In terms of MC_ACCs shown in 
Fig. 8, we set σ=2.2 and C =2 as the optimal estimation parameters of 
the SVM classifier with the RBF kernel in this study. 

Also, we further explore the influence of SVM with different kernel 
functions on the SSBIN-based feature in AD detection, AD detecting 
experiments using SVM with linear (SVM-L), quadratic (SVM-Q), poly
nomial (SVM-P), and RBF (SVM-RBF) kernels are performed on AD-vs- 
HC, AD-vs-MCI, MCI-vs-HC, and MCIc-vs-MCInc data sets, and experi
mental results are shown in Fig. 9. It can be obviously seen from Fig. 9 
that MC_ACCs, MC_Ses, and MC_Sps of the SVM-RBF are consistently 
better than those of the others, except for MC Se of the SVM-RBF on the 
MCI-vs-HC data set which is inferior to those of the SVM-Q and SVM-P. 
The phenomenon shown in Fig. 9 indicates that the SSBIN-based feature 
is not linearly separable and the separability of the SSBIN-based features 
can be realized in high dimensional space by nonlinear classifier such as 
the SVM classifier with the RBF kernel. Therefore, we select the SVM 
classifier with the RBF kernel for AD detection in our SSBIN method. 

For the SSBIN-based feature, it is made up of the edge feature LV and 
the node feature NV. We can confirm that the ROI and the correlation 
between different ROIs are two important information resources in 

Fig. 6. MC_ACCs of parameter evaluation experiments for the KPCA with a Gaussian kernel on AD-vs-HC, AD-vs-MCI, MCI-vs-HC, and MCIc-vs-MCInc data sets. (a) 
and (b) MC ACCs of parameter evaluation experiments with different P values. (c) and (d) MC_ACCs of parameter evaluation experiments with different K_W values. 

Fig. 7. Results of experiments under the PCA and the KPCA with linear (KPCA-L), polynomial (KPCA-P), and Gaussian (KPCA-G) kernels on AD-vs-HC, AD-vs-MCI, 
MCI-vs-HC, and MCIc-vs-MCInc data sets. 
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sufficiently describing the sMRI image. But, we cannot tell which part is 
dominant for the SSBIN-based feature. To solve this issue, multiple AD 
detecting experiments using the LV, the NV and the SSBIN-based feature 
are performed on AD-vs-HC, AD-vs-MCI, MCI-vs-HC, and MCIc-vs- 
MCInc data sets under cases of the SVM classifier with linear (SVM-L), 
quadratic (SVM-Q), polynomial (SVM-P), and RBF (SVM-RBF) kernel 
functions. MC ACCs of the three features using the SVM with different 
kernel functions are shown in Fig. 10. It can be clearly found from 
Fig. 10 that on the four data sets, MC_ACCs of the SSBIN-based feature 
using SVM-L, SVM-Q, SVM-P, and SVM-RBF are consistently superior to 
those of the LV and the NV, and MC_ACCs of the LV with SVM-Q, SVM-P, 
and SVM-RBF obviously outperform those of the NV, while MC_ACCs of 
the NV using SVM-L are better than those of the LV. According to Fig. 10, 
we can conclude that features extracted from the ROI and the correlation 
between different ROIs can be complementary to each other, and in 
comparison with the NV, the LV has nonlinear separability in high 
dimensional space. In other words, the NV extracted from the directional 
subbands can accurately describe those abnormal energy distribution 
patterns in the ROI, correlations (edge weights) between different ROIs 
can be computed by PCC, and the LV extracted from these edge weights 
is properly reconstructed by the KPCA with the Gaussian kernel. In this 

study, the SSBIN-based feature with KPCA-G and using SVM-RBF is 
regarded as the proposed method, which is briefly denoted as the SSBIN 
method. 

Finally, we listed MC_ACCs, MC_Ses, and MC_Sps of the SSBIN 
method on AD-vs-HC, AD-vs-MCI, MCI-vs-HC, and MCIc-vs-MCInc data 
sets in Table 3 under the cases of the directional level S =3, the 
decomposition scale L =1, the number of principal components P=19, 
the width of the Gaussian Kernel K_W =2.3, the window width of the 
RBF kernel σ=2.2, and the penalty coefficient of the SVM classifier C =2. 
As shown in Table 3, MC_ACCs of the SSBIN method are 94.78% on the 
AD-vs-HC data set, 90.00% on the AD-vs-MCI data set, 89.71% on the 
MCI-vs-HC data set, and 79.67% on the MCIc-vs-MCInc data set; MC_Ses 
of the SSBIN method on the AD-vs-HC and MCI-vs-HC data sets are su
perior to its MC_Sps, while MC_Ses of the SSBIN method are inferior to its 
MC_Sps on the AD-vs-MCI and MCIc-vs-MCInc data sets. The reason is 
that subjects with MCIc have more AD-like brain atrophy patterns; 
however, subjects with MCInc have more HC-like brain atrophy pat
terns, and meanwhile brain atrophies of HC individuals are slow and 
different from patients with AD and MCI. AUCs of the SSBIN method are 
0.9875 on the AD-vs-HC data set, 0.9089 on the AD-vs-MCI data set, 
0.9375 on the MCI-vs-HC data set and 0.8854 on the MCIc-vs-MCInc 

Fig. 8. MC_ACCs of parameter evaluation experiments for the SVM classifier with the Gaussian kernel on AD-vs-HC, AD-vs-MCI, MCI-vs-HC, and MCIc-vs-MCInc data 
sets. (a) and (b) MC_ACCs of different σ values. (c) and (d) MC_ACCs of different C values. 

Fig. 9. Results of AD detecting experiments using the SVM classifier with linear (SVM-L), quadratic (SVM-Q), polynomial (SVM-P), and RBF (SVM-RBF) kernels on 
AD-vs-HC, AD-vs-MCI, MCI-vs-HC, and MCIc-vs-MCInc data sets. 
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data set. Results in Table 3 indicate that the SSBIN-based feature can 
represent the sMRI image properly. 

On the whole, experimental results validate that the ROI can be 
properly described by the frequency domain-based feature, NV of the 
SSBIN can accurately describe the abnormal energy distribution patterns 
reflected in ROI, LV of the SSBIN is properly reconstructed by the KPCA 
with the Gaussian kernel, and the NV and the LV are complementary 
with each other in AD detection. 

4. Comparison 

In this section, we will compare the SSBIN method with four state-of- 
the-art approaches on AD-vs-HC, AD-vs-MCI, MCI-vs-HC, and MCIc-vs- 
MCInc data sets, including the hippocampal-based feature approach 
(HippF) (Li et al., 2019), the wavelet transform energy-based feature 
approach (WTEF) (Feng et al., 2020), the stationary wavelet 
entropy-based feature approach (SWEF) (Zhang et al., 2018), and the 
nonsubsample contourlet subband individual network-based feature 
approach (NCSIN) (Feng et al., 2021). 

For the AD-vs-HC data set, experimental results of the four state-of- 
the-art comparison approaches and the SSBIN method are listed in  
Table 4. According to MC_ACCs, MC_Ses, MC_Sps and AUCs shown in 
Table 4, MC_ACC, MC_Se and AUC of the SSBIN method are consistently 

higher than those of the four state-of-the-art comparison approaches; 
MC_ACC of the SSBIN method has reached to 94.78% and is marginally 
higher than that of the best comparison approach, MC_Se of the SSBIN 
method is 96.94% and is 0.36% higher than that of the best comparison 
approach, and AUC of the SSBIN method has reached to 0.9875. How
ever, MC_Sp of the SSBIN method is 1.45% lower than that of the best 
comparison approach, which is 91.20%, the reason of which is that with 
aging, brain of the HC individual also gradually shrikes, whereas the 
SSBIN method can capture brain atrophy patterns by subbands, so the 
older HC subjects maybe identified as AD patients to a large extent. 
Experimental results on the AD-vs-HC data set validate that the ROI can 
be properly described by features extracted from the subband in the 
frequency domain, the NV extracted from the directional subbands can 
accurately describe those abnormal energy distribution patterns, and the 
LV extracted from these edge weights is properly reconstructed by the 
KPCA with the Gaussian kernel. 

For the AD-vs-MCI data set, experimental results of the four state-of- 
the-art comparison approaches and the SSBIN method are listed in  
Table 5. It can be obviously seen from Table 5 that MC_Sp and AUC of the 
SSBIN method consistently outperforms those of the four state-of-the-art 
comparison approaches. MC_Sp of the SSBIN method is 91.70% and is 
2.17% higher than that of the best comparison approach, and AUC of the 
SSBIN method has reached to 0.9089. But MC_ACC of the SSBIN method 
is 90.00%, which is marginally lower than that of the best comparison 
approach, and MC_Se of the SSBIN method is 2.70% lower than that of 

Fig. 10. MC_ACCs of AD detecting experiments using the LV, the NV, and the SSBIN-based feature on AD-vs-HC, AD-vs-MCI, MCI-vs-HC, and MCIc-vs-MCInc 
data sets. 

Table 3 
Experimental results of the SSBIN method on AD-vs-HC, AD-vs-MCI, MCI-vs-HC, 
and MCIc-vs-MCInc data sets under the cases of the directional level S =3, the 
decomposition scale L =1, the number of principal components P=19, the width 
of the Gaussian Kernel K_W =2.3, the window width of the RBF kernel σ=2.2, 
and the penalty coefficient of the SVM classifier C =2.  

Four datasets AD-vs-HC AD-vs-MCI MCI-vs-HC MCIc-vs-MCInc 

MC_ACC (%)  94.78  90.00  89.71  79.67 
MC_Se (%)  96.94  88.30  91.18  78.30 
MC_Sp (%)  91.20  91.70  87.65  81.05 
AUC  0.9875  0.9089  0.9375  0.8854  

Table 4 
Experimental results of the four other state-of-the-art comparison approaches 
and the SSBIN method on the AD-vs-HC data set.  

Method MC_ACC (%) MC_Se (%) MC_Sp (%) AUC 

HippF (2019)  87.51  87.60  87.42  0.8450 
WTEF (2020)  92.83  93.07  92.65  0.8850 
SWEF (2018)  92.70  93.67  91.77  0.9325 
NCSIN (2021)  94.21  96.58  92.44  0.9850 
SSBIN  94.78  96.94  91.20  0.9875  
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the four state-of-the-art comparison approaches, which is 88.30%. 
Experimental results on the AD-vs-MCI data set indicate that differences 
between atrophy patterns from patients with AD and MCI are small, 
resulting that patients with MCI are easily identified as AD. Therefore, 
MC_ACC and MC_Se of the SSBIN method is marginally poor. But this 
indirectly validates that atrophy patterns of the ROIs and correlations 
between them can be captured by the SSBIN-based feature. 

For the MCI-vs-HC data set, experimental results of the four state-of- 
the-art comparison approaches and the SSBIN method are listed in  
Table 6. According to MC_ACCs, MC_Ses, MC_Sps and AUCs shown in 
Table 6, MC_ACC, MC_Sp and AUC of the SSBIN method are consistently 
higher than those of the four state-of-the-art comparison approaches, 
MC_ACC of the SSBIN method has reached to 89.71% and is 5.07% 
higher than that of the best comparison approach, MC_Sp of the SSBIN 
method is 0.67% higher than that of the best comparison approach, 
which is 87.65%, and AUC of the SSBIN method has reached to 0.9375. 
However, MC_Se of the SSBIN method is 91.18% and is 4.61% lower 
than that of the best comparison approach. Based on MC_ACCs of the 
SSBIN method shown in Tables 5 and 6, we can find that patients with 
MCI have more HC-like and in contrast less AD-like energy distribution 
patterns in their sMRI images, that is, brain tissues from patients with 
MCI are only partly destroyed to a small extent and this is the best time 
to benefit from the clinical treatment. Therefore, MCI is a key stage for 
the progression of a patient and identification of patients with MCI can 
make significant sense in clinics. Experimental results on the MCI-vs-HC 
data set show that differences between subjects with MCI and HC can be 
captured by the SSBIN-based feature, which means that correlations 
contained in different ROIs can be constructed by PCC using the subband 
energy feature in the frequency domain. 

For the challenging MCIc-vs-MCInc data set, experimental results of 
the four state-of-the-art comparison approaches and the SSBIN method 
are listed in Table 7. It can be clearly observed from Table 7 that 
MC_ACC, MC_Sp and AUC of the SSBIN method consistently outperform 
those of the four state-of-the-art comparison approaches. MC_ACC of the 
SSBIN method is 79.67%, which is higher than 79.42% of the best 
comparison approach. MC_Sp of the SSBIN method is 81.05% and is 
4.50% higher than that of the best comparison approach. AUC of the 
SSBIN method has reached to 0.8854. However, MC_Se of the SSBIN 
method is 4.00% lower than that of the best comparison approach, 
which is 78.30%. Experimental results on the MCIc-vs-MCInc data set 
further validate that differences between atrophy patterns of subjects 
with MCIc and MCInc can be captured by the SSBIN-based feature, the 
NV can accurately describe those abnormal energy distribution patterns 
contained in different ROIs, and the LV can be used to describe corre
lations between those ROIs. 

In order to make a visual comparison, ROC curves of the four com
parison approaches and the SSBIN method on AD-vs-HC, AD-vs-MCI, 
MCI-vs-HC, and MCIc-vs-MCInc data sets are also given, which are 
shown in Fig. 11. It can be obviously seen from Fig. 11 that ROC curves 
of the SSBIN method on the four data sets are in the upper left corner, 
which further indicate that the SSBIN method outperforms the four 
state-of-the-art approaches. 

In addition, we also give the mean computing time (MCT, in seconds) 
of the SSBIN method on MCIc/MCInc data set in identifying 160 sub
jects. The program runs on Matlab R2017a and computer with Intel(R) 
Core(TM) i7–4700 3.40 GHz CPU 64 bit system. Experimental results 
indicate that MCT of performing the shearlet transform on the GM image 
is 2.90 s, MCT of constructing the SSBIN feature is 0.50 s, and MCT of 
extracting the SSBIN feature from the GM image is 3.41 s. Obviously, the 
shearlet transform is time-consuming in the SSBIN method. While in 
comparison with the method HippF’s 83.02 s, WTEF’s 5.41 s, SWEF’s 
8.46 s, and NCSIN’s 4.30 s, 3.41 s of the SSBIN method is more efficient. 

Recently, the machine learning-based approach, especially the deep 
learning-based method, has been widely used in many fields. Therefore, 
we also compare the SSBIN method with the machine learning-based 
approaches, including the conventional learning-based approaches 
(DMTFS (Ye et al., 2016), LBFE (Zhang et al., 2016), and MKMFA (Cao 
et al., 2017)) and the deep learning-based approaches (DLASAE (Liu 
et al., 2014), VGGNet (Simonyan and Zisserman, 2015), and DenseNet 
(Liu et al., 2020)). Experimental results of the SSBIN method and pub
lished results of the machine learning-based approaches on AD-vs-HC 
and MCI-vs-HC data sets are listed in Table 8, respectively, including 
accuracy (ACC), sensitivity (Se) and specificity (Sp). According to 
Table 8, it can be seen that MC ACC, MC Se, MC Sp of the SSBIN method 
consistently outperform those of the machine learning-based ap
proaches. The reason is two-fold. One is that for the deep learning-based 
methods, the input layer contains more than ten thousand nodes because 
of the high dimensionality of the sMRI image, which causes a huge 
number of parameters to deep learning framework, but samples can be 
used to train network architecture are small (Feng et al., 2021). Another 
is that the sMRI image contains a lot of redundant information such as 
the black background; therefore, the useful information may not be 
dominant in the extracted deep learning-based feature (Feng et al., 
2021). 

In summary, comprehensive comparisons validate the feasibility of 
representing ROI by directional subbands in the frequency domain, and 
demonstrate that the SSBIN method outperforms the four other state-of- 
the-art approaches in terms of MC ACC, MC Se, MC Sp, AUC and ROC, 
which indicates that the SSBIN-based feature can be an assistant imaging 
marker for the clinical AD diagnosis using the sMRI image. 

5. Conclusions 

In order to represent ROIs of the sMRI image in the frequency domain 
and then construct an individual network, in this study, a novel method 
is proposed to construct a SSBIN-based feature for detecting AD patients. 
Particularly, the shearlet transform is separately performed on each of 
the 90 ROIs to get the directional subband, following that a SSBIN is 
constructed with the 90 SVs and its weight values are calculated by PCC. 
Subsequently, we extract two features from the SSBIN, the NV is 

Table 5 
Experimental results of the four other state-of-the-art comparison approaches 
and the SSBIN method on the AD-vs-MCI data set.  

Method MC_ACC (%) MC_Se (%) MC_Sp (%) AUC 

HippF (2019)  79.35  79.44  79.26  0.7768 
WTEF (2020)  84.40  80.11  87.91  0.7732 
SWEF (2018)  81.89  76.26  80.65  0.7464 
NCSIN (2021)  90.03  91.00  89.53  0.9018 
SSBIN  90.00  88.30  91.70  0.9089  

Table 6 
Experimental results of the four other state-of-the-art comparison approaches 
and the SSBIN method on the MCI-vs-HC data set.  

Method MC_ACC (%) MC_Se (%) MC_Sp (%) AUC 

HippF (2019)  77.25  95.79  53.23  0.8143 
WTEF (2020)  80.82  76.49  85.70  0.8554 
SWEF (2018)  80.67  76.79  86.98  0.8500 
NCSIN (2021)  84.64  88.61  81.70  0.9125 
SSBIN  89.71  91.18  87.65  0.9375  

Table 7 
Experimental results of the four other state-of-the-art comparison approaches 
and the SSBIN method on the MCIc-vs-MCInc data set.  

Method MC_ACC (%) MC_Se (%) MC_Sp (%) AUC 

HippF (2019)  69.38  69.47  69.29  0.7031 
WTEF (2020)  73.43  70.06  75.59  0.7240 
SWEF (2018)  72.86  69.55  75.49  0.6972 
NCSIN (2021)  79.42  82.30  76.55  0.8542 
SSBIN  79.67  78.30  81.05  0.8854  
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computed by averaging these SVs, and the LV is obtained by KPCA. 
Finally, concatenation of the NV and the LV is used as the SSBIN-based 
feature. Even though the SSBIN method can achieve a better AD 
detecting performance, features extracted from the SSBIN are not asso
ciated with the genetic information related to AD. In addition, sMRI is 
not the only modality for AD diagnosis. Hence more clinical information 
should be considered to make an accurate AD detection. Therefore, in 
the future work, we will extract features from the combination of mul
tiple modalities for AD detection. 
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Fig. 11. ROC curves of the four comparison approaches and the SSBIN method on AD-vs-HC, AD-vs-MCI, MCI-vs-HC, and MCIc-vs-MCInc data sets.  

Table 8 
Results of the SSBIN method and those published of the machine learning-based 
approaches on AD-vs-HC and MCI-vs-HC data sets.  

Method AD/MCI/HC AD-vs-HC (%) MCI-vs-HC (%) 

ACC Se Sp ACC Se Sp 

DMTFS 51/99/52  87.30  88.40  86.20  68.20  76.90  51.10 
LBFE 51/99/52  83.10  80.50  85.10  73.60  75.30  69.70 
MKMFA 192/397/ 

229  
88.60  85.70  90.40  71.90  79.00  60.70 

DLASAE 65/169/77  87.80  88.60  87.20  76.92  74.29  78.13 
VGGNet 97/233/119  84.70  77.30  90.80  70.90  81.90  65.20 
DenseNet 97/233/119  88.90  86.60  90.80  76.20  79.50  69.80 
SSBIN 200/280/ 

200  
94.78  96.94  96.20  89.71  91.18  87.65  
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